AP Calculus AB Scoring Guidelines

Question 1

(a) Volume $=\int_{0}^{10} A(h) d h$

$$
\begin{aligned}
& \approx(2-0) \cdot A(0)+(5-2) \cdot A(2)+(10-5) \cdot A(5) \\
& =2 \cdot 50.3+3 \cdot 14.4+5 \cdot 6.5 \\
& =176.3 \text { cubic feet }
\end{aligned}
$$

(b) The approximation in part (a) is an overestimate because a left Riemann sum is used and A is decreasing.
(c) $\int_{0}^{10} f(h) d h=101.325338$

The volume is 101.325 cubic feet.
(d) Using the model, $V(h)=\int_{0}^{h} f(x) d x$.

$$
\begin{aligned}
\left.\frac{d V}{d t}\right|_{h=5} & =\left[\frac{d V}{d h} \cdot \frac{d h}{d t}\right]_{h=5} \\
& =\left[f(h) \cdot \frac{d h}{d t}\right]_{h=5} \\
& =f(5) \cdot 0.26=1.694419
\end{aligned}
$$

When $h=5$, the volume of water is changing at a rate of 1.694 cubic feet per minute.

AP ${ }^{\oplus}$ CALCULUS AB 2017 SCORING GUIDELINES

Question 2

(a) $\int_{0}^{2} f(t) d t=20.051175$
20.051 pounds of bananas are removed from the display table during the first 2 hours the store is open.
(b) $f^{\prime}(7)=-8.120($ or -8.119$)$

After the store has been open 7 hours, the rate at which bananas are being removed from the display table is decreasing by 8.120 (or 8.119) pounds per hour per hour.
(c) $g(5)-f(5)=-2.263103<0$

Because $g(5)-f(5)<0$, the number of pounds of bananas on the display table is decreasing at time $t=5$.
(d) $50+\int_{3}^{8} g(t) d t-\int_{0}^{8} f(t) d t=23.347396$
23.347 pounds of bananas are on the display table at time $t=8$.
$2:\left\{\begin{array}{l}1: \text { integral } \\ 1: \text { answer }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { value } \\ 1: \text { meaning }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { considers } f(5) \text { and } g(5) \\ 1: \text { answer with reason }\end{array}\right.$
$3:\left\{\begin{array}{l}2: \text { integrals } \\ 1: \text { answer }\end{array}\right.$

Question 3

(a) $f(-6)=f(-2)+\int_{-2}^{-6} f^{\prime}(x) d x=7-\int_{-6}^{-2} f^{\prime}(x) d x=7-4=3$ $f(5)=f(-2)+\int_{-2}^{5} f^{\prime}(x) d x=7-2 \pi+3=10-2 \pi$
(b) $f^{\prime}(x)>0$ on the intervals $[-6,-2)$ and $(2,5)$.

Therefore, f is increasing on the intervals $[-6,-2]$ and $[2,5]$.
(c) The absolute minimum will occur at a critical point where $f^{\prime}(x)=0$ or at an endpoint.
$f^{\prime}(x)=0 \Rightarrow x=-2, x=2$

x	$f(x)$
-6	3
-2	7
2	$7-2 \pi$
5	$10-2 \pi$

The absolute minimum value is $f(2)=7-2 \pi$.
(d) $f^{\prime \prime}(-5)=\frac{2-0}{-6-(-2)}=-\frac{1}{2}$
$\lim _{x \rightarrow 3^{-}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}=2$ and $\lim _{x \rightarrow 3^{+}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}=-1$
$f^{\prime \prime}(3)$ does not exist because
$\lim _{x \rightarrow 3^{-}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3} \neq \lim _{x \rightarrow 3^{+}} \frac{f^{\prime}(x)-f^{\prime}(3)}{x-3}$.
$3:\left\{\begin{array}{l}1: \text { uses initial condition } \\ 1: f(-6) \\ 1: f(5)\end{array}\right.$

2 : answer with justification
$2:\left\{\begin{array}{l}1: \text { considers } x=2 \\ 1: \text { answer with justification }\end{array}\right.$
$2:\left\{\begin{array}{c}1: f^{\prime \prime}(-5) \\ 1: f^{\prime \prime}(3) \text { does not exist, } \\ \text { with explanation }\end{array}\right.$

Question 4

(a) $H^{\prime}(0)=-\frac{1}{4}(91-27)=-16$
$H(0)=91$
An equation for the tangent line is $y=91-16 t$.
The internal temperature of the potato at time $t=3$ minutes is approximately $91-16 \cdot 3=43$ degrees Celsius.
(b) $\frac{d^{2} H}{d t^{2}}=-\frac{1}{4} \frac{d H}{d t}=\left(-\frac{1}{4}\right)\left(-\frac{1}{4}\right)(H-27)=\frac{1}{16}(H-27)$
$H>27$ for $t>0 \Rightarrow \frac{d^{2} H}{d t^{2}}=\frac{1}{16}(H-27)>0$ for $t>0$
Therefore, the graph of H is concave up for $t>0$. Thus, the answer in part (a) is an underestimate.
(c) $\frac{d G}{(G-27)^{2 / 3}}=-d t$
$\int \frac{d G}{(G-27)^{2 / 3}}=\int(-1) d t$
$3(G-27)^{1 / 3}=-t+C$
$3(91-27)^{1 / 3}=0+C \Rightarrow C=12$
$3(G-27)^{1 / 3}=12-t$
$G(t)=27+\left(\frac{12-t}{3}\right)^{3}$ for $0 \leq t<10$
The internal temperature of the potato at time $t=3$ minutes is $27+\left(\frac{12-3}{3}\right)^{3}=54$ degrees Celsius.
$3:\left\{\begin{array}{l}1: \text { slope } \\ 1: \text { tangent line } \\ 1: \text { approximation }\end{array}\right.$

1 : underestimate with reason

5 :
1 : separation of variables
1 : antiderivatives
1 : constant of integration and uses initial condition
1: equation involving G and t
$1: G(t)$ and $G(3)$
Note: $\max 2 / 5$ [1-1-0-0-0] if no constant of integration

Note: $0 / 5$ if no separation of variables

Question 5

(a) $x_{P}^{\prime}(t)=\frac{2 t-2}{t^{2}-2 t+10}=\frac{2(t-1)}{t^{2}-2 t+10}$
$t^{2}-2 t+10>0$ for all t.

$$
\begin{aligned}
& x_{P}^{\prime}(t)=0 \Rightarrow t=1 \\
& x_{P}^{\prime}(t)<0 \text { for } 0 \leq t<1 .
\end{aligned}
$$

Therefore, the particle is moving to the left for $0 \leq t<1$.
(b) $v_{Q}(t)=(t-5)(t-3)$
$v_{Q}(t)=0 \Rightarrow t=3, t=5$

Both particles move in the same direction for $1<t<3$ and $5<t \leq 8$ since $v_{P}(t)=x_{P}^{\prime}(t)$ and $v_{Q}(t)$ have the same sign on these intervals.
(c) $a_{Q}(t)=v_{Q}^{\prime}(t)=2 t-8$
$a_{Q}(2)=2 \cdot 2-8=-4$
$a_{Q}(2)<0$ and $v_{Q}(2)=3>0$
At time $t=2$, the speed of the particle is decreasing because velocity and acceleration have opposite signs.
(d) Particle Q first changes direction at time $t=3$.

$$
\begin{aligned}
x_{Q}(3) & =x_{Q}(0)+\int_{0}^{3} v_{Q}(t) d t=5+\int_{0}^{3}\left(t^{2}-8 t+15\right) d t \\
& =5+\left[\frac{1}{3} t^{3}-4 t^{2}+15 t\right]_{t=0}^{t=3}=5+(9-36+45)=23
\end{aligned}
$$

$2:\left\{\begin{array}{l}1: x_{P}^{\prime}(t) \\ 1: \text { interval }\end{array}\right.$
$2:\left\{\begin{array}{l}1: \text { intervals } \\ 1: \text { analysis using } v_{P}(t) \text { and } v_{Q}(t)\end{array}\right.$
Note: $1 / 2$ if only one interval with analysis

Note: $0 / 2$ if no analysis
$2:\left\{\begin{array}{l}1: a_{Q}(2) \\ 1: \text { speed decreasing with reason }\end{array}\right.$
$3:\left\{\begin{array}{l}1: \text { antiderivative } \\ 1: \text { uses initial condition } \\ 1: \text { answer }\end{array}\right.$

AP ${ }^{\oplus}$ CALCULUS AB
 2017 SCORING GUIDELINES

Question 6

(a) $f^{\prime}(x)=-2 \sin (2 x)+\cos x e^{\sin x}$

$$
f^{\prime}(\pi)=-2 \sin (2 \pi)+\cos \pi e^{\sin \pi}=-1
$$

(b) $k^{\prime}(x)=h^{\prime}(f(x)) \cdot f^{\prime}(x)$

$$
\begin{aligned}
k^{\prime}(\pi) & =h^{\prime}(f(\pi)) \cdot f^{\prime}(\pi)=h^{\prime}(2) \cdot(-1) \\
& =\left(-\frac{1}{3}\right)(-1)=\frac{1}{3}
\end{aligned}
$$

(c) $m^{\prime}(x)=-2 g^{\prime}(-2 x) \cdot h(x)+g(-2 x) \cdot h^{\prime}(x)$

$$
\begin{aligned}
m^{\prime}(2) & =-2 g^{\prime}(-4) \cdot h(2)+g(-4) \cdot h^{\prime}(2) \\
& =-2(-1)\left(-\frac{2}{3}\right)+5\left(-\frac{1}{3}\right)=-3
\end{aligned}
$$

(d) g is differentiable. $\Rightarrow g$ is continuous on the interval $[-5,-3]$.

$$
\frac{g(-3)-g(-5)}{-3-(-5)}=\frac{2-10}{2}=-4
$$

Therefore, by the Mean Value Theorem, there is at least one value c, $-5<c<-3$, such that $g^{\prime}(c)=-4$.
$2: f^{\prime}(\pi)$
$2:\left\{\begin{array}{l}1: k^{\prime}(x) \\ 1: k^{\prime}(\pi)\end{array}\right.$
$3:\left\{\begin{array}{l}2: m^{\prime}(x) \\ 1: m^{\prime}(2)\end{array}\right.$
$2:\left\{\begin{array}{l}1: \frac{g(-3)-g(-5)}{-3-(-5)} \\ 1: \text { justification, } \\ \quad \text { using Mean Value Theorem }\end{array}\right.$

